
electronics

Article

Area-Efficient Differential Fault Tolerance Encoding
for Finite State Machines

Jiwoon Park and Hoyoung Yoo *

Department of Electronics Engineering, Chungnam National University, Daejeon 34134, Korea;
jwpark.cas@gmail.com
* Correspondence: hyyoo@cnu.ac.kr

Received: 14 June 2020; Accepted: 5 July 2020; Published: 8 July 2020
����������
�������

Abstract: A differential fault tolerance encoding is presented for finite state machines (FSMs) to
improve their area efficiency. As the manufacturing technology for semiconductors continues to
scale down, the probability of the occurrence of unexpected faults in integrated circuits has been
increasing. Because an FSM controls an entire digital circuit, the faults in FSMs should be carefully
addressed. Whereas the previous encoding applies a fault tolerance scheme to all the states in an FSM,
the proposed encoding applies a fault tolerance scheme to only specific states depending on their
importance. Compared with the previous complete fault tolerance encoding, the proposed encoding
provides a comparable failure probability with a small hardware by applying the fault tolerance
scheme differently to each state. The proposed method improves the area efficiency by 36.1%, 43.8%,
49.2%, and 74.6% compared with that by the non-fault tolerance, previous hardware redundancy,
information redundancy, and time redundancy methods, respectively. Consequently, the proposed
method can provide a flexible solution by applying the fault tolerance differently depending on the
importance of the states.

Keywords: finite state machine; fault tolerance; hamming distance; error correction code; encoding

1. Introduction

The finite state machine (FSM) is a popular technique used to model the complex operations of
a general device. With the inputs provided, a device can be systematically controlled following the
transition from the current state to the next state based on an FSM. Two types of FSMs are widely used,
namely Mealy [1] and Moore [2] machines. Moore [2] machines determine the outputs according to
only the current state, whereas Mealy [1] machines determine the output according to both the current
state and current inputs. Due to the intuitive description of Mealy [1] and Moore [2] machines, FSMs
are widely adopted in various operational models [3–5]. In particular, modern digital circuits generally
employ FSMs to build control paths that control the data path efficiently [6,7]. Furthermore, FSMs
should be carefully dealt with because even a minute variation in them could completely alter the
overall operation of the digital circuits [6,7].

As the manufacturing technology for semiconductors continues to scale down, designing
high-performance hardware with a smaller size, high throughput, and low power consumption
has become an easy task for circuit designers. However, the probability of the occurrence of unexpected
faults inevitably increases in integrated circuits [8,9]. Because it is impossible to eliminate unexpected
faults completely, the faults should be carefully considered, beginning with the design stage to the
manufacturing stage [10]. In general, faults are categorized into event upset and event transient,
depending on the fault location. Event upset represents the type of fault that flips the stored bit in
storage due to an energetic particle hit, and event transient represents the type of fault that generates a
temporary pulse in the output of a logic gate by colliding an energetic particle with a logic gate [10,11].

Electronics 2020, 9, 1110; doi:10.3390/electronics9071110 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-9323-0398
http://www.mdpi.com/2079-9292/9/7/1110?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9071110
http://www.mdpi.com/journal/electronics


Electronics 2020, 9, 1110 2 of 13

Temporary event upset and event transient, known respectively as single event upset (SEU) [12,13]
and single event transient (SET) [14,15], constitute the majority of the various types of faults in modern
integrated chips [8,16].

To mitigate this problem, we propose a novel area-efficient and fault-tolerant encoding for FSMs.
First, the proposed method divides the states into critical and non-critical states depending on the
importance of the states. Then, different fault tolerances are imparted into the two sets of states.
Strong fault tolerances are supported on critical states, and weak fault tolerances are supported on
non-critical states. According to experimental results, the proposed method can provide a flexible
area-efficient solution by applying the fault tolerance differently depending on the importance of the
states. The remainder of this paper is organized as follows. Section 2 describes the background of
the FSMs and the previous fault tolerant techniques. Section 3 explains the proposed discriminative
encoding that provides different fault tolerances on states depending on the importance of the states.
Section 4 discusses the experimental results using ISCAS’91 benchmarks, followed by concluding
remarks in Section 5.

2. Background

2.1. Finite State Machine

Generally, the first step in designing an FSM is to define the operation of the digital circuits as a
finite number of states. Once the states are defined, each state describes the transition and the output
according to the input. To design an FSM concisely, Mealy and Moore machines are widely used; the
difference between these machines lies in the factors that affect the output. Mealy machines determine
the output depending on both the current state and current inputs, and Moore machines determine
the output depending on only the current state. Generally, Mealy machines demand fewer states
with complex output logics, whereas Moore machines demand a large number of states with simple
output logics. Because this research focuses on fault-tolerant encoding rather than the FSM structure,
for a concise elucidation, we provide explanations based on a Mealy machine with complex output
logics. It is noticeable that the proposed method can be applied to Moore machines without the loss
of generality.

We adopt a dk17 FSM as an example, which is obtained from the widely used ISCAS’91 FSM
benchmark, to explain the conventional and fault-tolerant FSM encoding throughout the manuscript.
Figure 1 and Table 1 show the state transition graph and state transition table, respectively, for a
dk17 FSM obtained from the ISCAS’91 FSM benchmark; the graph and the table provide intuitive
information about the FSM. The FSM consists of eight states, represented as Si (0 ≤ i ≤ 7), with a
two-bit input I and three-bit output O (Figure 1 and Table 1). The next state Sj and output O are
determined based on current state Si and input I. For example, when current S0 receives input I = 01,
the next state becomes S3 and the output is computed as O = 010. Because Si is a symbol, it is necessary
to represent state Si as a binary number to implement hardware, which is termed as state encoding.
In general, binary encoding is widely used to assign the binary number of i to the ith (Table 1). Because
the encoding affects the overall performance of the FSM, it should be designed carefully [16].

Figure 2 depicts a typical block diagram of the FSMs, which consists of a state register, next state
logic, and output logic [17,18]. The n-bit state register stores the current state when the binary state
encoding is applied, where n denotes the log of the total number of states [19]. The next state logic
and output logic are responsible for calculating the next state and output, given the current state and
input [17]. It is noticeable that the two logics are implemented with all combinational logics. Due to
the simple structure of the FSM (Figure 2), FSMs are widely used to design the control paths in modern
digital systems.



Electronics 2020, 9, 1110 3 of 13

Electronics 2020, 6, x FOR PEER REVIEW 3 of 13 

 

S1

S2

00/100

S4

S5

S6

S7

11/010

S3

10/010

01/000

00/001

S0

 

Figure 1. State transition graph for dk17 FSM (finite state machines). 

Figure 2 depicts a typical block diagram of the FSMs, which consists of a state register, next state 

logic, and output logic [17,18]. The n-bit state register stores the current state when the binary state 

encoding is applied, where n denotes the log of the total number of states [19]. The next state logic 

and output logic are responsible for calculating the next state and output, given the current state and 

input [17]. It is noticeable that the two logics are implemented with all combinational logics. Due to 

the simple structure of the FSM (Figure 2), FSMs are widely used to design the control paths in 

modern digital systems. 

Input Output
Next State 

Logic

State 

Register
Output 

Logic

2 333

 

Figure 2. Block diagram of dk17 FSM structure. 

2.2. Fault-Tolerant Techniques 

Because of the nanoscales used in the manufacturing of semiconductors, the increase in the 

number of malicious faults, such as event upsets, is inevitable in the existing integrated chips [8,9]. 

To mitigate this problem, these faults should be carefully dealt with, beginning from the design stage 

to the manufacturing stage. As mentioned earlier, the redundancy technique is a very popular 

method that can be implemented right from the design stage to improve the fault tolerance. The 

redundancy is mainly divided into three types: (1) hardware [20–22], (2) time [23], and (3) information 

redundancy [24]. 

Figure 1. State transition graph for dk17 FSM (finite state machines).

Table 1. State transition table encoded with binary encoding.

State
Next State Outputs

I = 00 I = 01 I = 10 I = 11 I = 00 I = 01 I = 10 I = 11

S0 (000) S0 S3 S1 S4 001 010 001 010
S1 (001) S2 S3 S2 S5 000 000 010 000
S2 (010) S0 S0 S1 S1 001 101 001 101
S3 (011) S3 S4 S3 S4 100 101 010 101
S4 (100) S4 S3 S4 S4 000 100 010 100
S5 (101) S6 S7 S2 S2 000 000 010 100
S6 (110) S3 S0 S4 S1 010 101 010 101
S7 (111) S3 S4 S2 S2 100 100 010 100

Electronics 2020, 6, x FOR PEER REVIEW 3 of 13 

 

S1

S2

00/100

S4

S5

S6

S7

11/010

S3

10/010

01/000

00/001

S0

 

Figure 1. State transition graph for dk17 FSM (finite state machines). 

Figure 2 depicts a typical block diagram of the FSMs, which consists of a state register, next state 

logic, and output logic [17,18]. The n-bit state register stores the current state when the binary state 

encoding is applied, where n denotes the log of the total number of states [19]. The next state logic 

and output logic are responsible for calculating the next state and output, given the current state and 

input [17]. It is noticeable that the two logics are implemented with all combinational logics. Due to 

the simple structure of the FSM (Figure 2), FSMs are widely used to design the control paths in 

modern digital systems. 

Input Output
Next State 

Logic

State 

Register
Output 

Logic

2 333

 

Figure 2. Block diagram of dk17 FSM structure. 

2.2. Fault-Tolerant Techniques 

Because of the nanoscales used in the manufacturing of semiconductors, the increase in the 

number of malicious faults, such as event upsets, is inevitable in the existing integrated chips [8,9]. 

To mitigate this problem, these faults should be carefully dealt with, beginning from the design stage 

to the manufacturing stage. As mentioned earlier, the redundancy technique is a very popular 

method that can be implemented right from the design stage to improve the fault tolerance. The 

redundancy is mainly divided into three types: (1) hardware [20–22], (2) time [23], and (3) information 

redundancy [24]. 

Figure 2. Block diagram of dk17 FSM structure.

2.2. Fault-Tolerant Techniques

Because of the nanoscales used in the manufacturing of semiconductors, the increase in the
number of malicious faults, such as event upsets, is inevitable in the existing integrated chips [8,9]. To
mitigate this problem, these faults should be carefully dealt with, beginning from the design stage to the
manufacturing stage. As mentioned earlier, the redundancy technique is a very popular method that can



Electronics 2020, 9, 1110 4 of 13

be implemented right from the design stage to improve the fault tolerance. The redundancy is mainly
divided into three types: (1) hardware [20–22], (2) time [23], and (3) information redundancy [24].

Hardware redundancy [20–22] duplicates the original design by as many as the redundancy
number R. Based on the majority votes, the final output is determined from among the R outputs of
different hardware. For the case of R = 3, Figure 3 shows the example of a block diagram of a dk17 FSM
with hardware redundancy [20–22], where the gray color indicates the additional hardware resources
compared to the typical FSM structure. Although hardware redundancy [20–22] is simple to design, as
shown in Figure 3, it demands the same amount of additional hardware as the redundancy number
R. The hardware complexity increases substantially when a large redundancy number R is applied.
Next, we discuss time redundancy. Time redundancy [23] provides fault tolerance by performing
the same operation repetitively with the same hardware for the number of times corresponding to
redundancy number R. Figure 4 shows the example of a block diagram of a dk17 FSM with time
redundancy [20–22] with an additional check register and exclusive-or gate. Compared with that
for hardware redundancy [20–22] in Figure 3, the amount of additional hardware required in time
redundancy [23] is negligible, as shown in Figure 4; however, time redundancy [23] deteriorates
the latency due to the large value of R resulting from additional iterations. Finally, information
redundancy [24] uses additional redundant bits to represent binary numbers. In FSMs, information
redundancy [24] can provide a solution that is intermediate between that of the hardware and the time
redundancy techniques. For instance, the Hamming-h technique for FSMs was introduced, where
Hamming distance h indicates the number of bit differences between binary vectors [24]. As the
Hamming distance increases, information redundancy can provide strong fault tolerance. Table 2
shows an example of H-2 and H-3 encoding for a dk17 FSM, where H-h represents encoding with
Hamming distance h. As shown in Table 2, the vectors in H-2 differ by 2 bits at most, enabling it to
provide single bit fault detection. Additionally, the vectors in H-3 differ by 3 bits at most, enabling
it to provide single bit fault correction. Note that binary encoding can be interpreted as H-1; thus,
it can provide no fault tolerance at all. As shown in Figure 5, the previous H-h [24] in information
redundancy can provide desirable fault tolerance with a small increase in the number of hardware and
latency, but it must be improved further in terms of hardware efficiency.

Electronics 2020, 6, x FOR PEER REVIEW 4 of 13 

 

Hardware redundancy [20–22] duplicates the original design by as many as the redundancy 

number R. Based on the majority votes, the final output is determined from among the R outputs of 

different hardware. For the case of R = 3, Figure 3 shows the example of a block diagram of a dk17 

FSM with hardware redundancy [20–22], where the gray color indicates the additional hardware 

resources compared to the typical FSM structure. Although hardware redundancy [20–22] is simple 

to design, as shown in Figure 3, it demands the same amount of additional hardware as the 

redundancy number R. The hardware complexity increases substantially when a large redundancy 

number R is applied. Next, we discuss time redundancy. Time redundancy [23] provides fault 

tolerance by performing the same operation repetitively with the same hardware for the number of 

times corresponding to redundancy number R. Figure 4 shows the example of a block diagram of a 

dk17 FSM with time redundancy [20–22] with an additional check register and exclusive-or gate. 

Compared with that for hardware redundancy [20–22] in Figure 3, the amount of additional 

hardware required in time redundancy [23] is negligible, as shown in Figure 4; however, time 

redundancy [23] deteriorates the latency due to the large value of R resulting from additional 

iterations. Finally, information redundancy [24] uses additional redundant bits to represent binary 

numbers. In FSMs, information redundancy [24] can provide a solution that is intermediate between 

that of the hardware and the time redundancy techniques. For instance, the Hamming-h technique 

for FSMs was introduced, where Hamming distance h indicates the number of bit differences between 

binary vectors [24]. As the Hamming distance increases, information redundancy can provide strong 

fault tolerance. Table 2 shows an example of H-2 and H-3 encoding for a dk17 FSM, where H-h 

represents encoding with Hamming distance h. As shown in Table 2, the vectors in H-2 differ by 2 

bits at most, enabling it to provide single bit fault detection. Additionally, the vectors in H-3 differ by 

3 bits at most, enabling it to provide single bit fault correction. Note that binary encoding can be 

interpreted as H-1; thus, it can provide no fault tolerance at all. As shown in Figure 5, the previous 

H-h [24] in information redundancy can provide desirable fault tolerance with a small increase in the 

number of hardware and latency, but it must be improved further in terms of hardware efficiency. 

Next State 

Logic

State 

Register

Output 

Logic
Input

State 

Register

Voting 

Logic
Output

State 

Register

2 33 3

3

3

3

 

Figure 3. Block diagram of dk17 FSM structure with hardware redundancy. 

Next State 

Logic

State 

Register
Input

3 Output 

Logic

Check 

Register
Output

2
3

3 3 3

 

Figure 4. Block diagram of dk17 FSM structure with time redundancy. 

Figure 3. Block diagram of dk17 FSM structure with hardware redundancy.

Electronics 2020, 6, x FOR PEER REVIEW 4 of 13 

 

Hardware redundancy [20–22] duplicates the original design by as many as the redundancy 

number R. Based on the majority votes, the final output is determined from among the R outputs of 

different hardware. For the case of R = 3, Figure 3 shows the example of a block diagram of a dk17 

FSM with hardware redundancy [20–22], where the gray color indicates the additional hardware 

resources compared to the typical FSM structure. Although hardware redundancy [20–22] is simple 

to design, as shown in Figure 3, it demands the same amount of additional hardware as the 

redundancy number R. The hardware complexity increases substantially when a large redundancy 

number R is applied. Next, we discuss time redundancy. Time redundancy [23] provides fault 

tolerance by performing the same operation repetitively with the same hardware for the number of 

times corresponding to redundancy number R. Figure 4 shows the example of a block diagram of a 

dk17 FSM with time redundancy [20–22] with an additional check register and exclusive-or gate. 

Compared with that for hardware redundancy [20–22] in Figure 3, the amount of additional 

hardware required in time redundancy [23] is negligible, as shown in Figure 4; however, time 

redundancy [23] deteriorates the latency due to the large value of R resulting from additional 

iterations. Finally, information redundancy [24] uses additional redundant bits to represent binary 

numbers. In FSMs, information redundancy [24] can provide a solution that is intermediate between 

that of the hardware and the time redundancy techniques. For instance, the Hamming-h technique 

for FSMs was introduced, where Hamming distance h indicates the number of bit differences between 

binary vectors [24]. As the Hamming distance increases, information redundancy can provide strong 

fault tolerance. Table 2 shows an example of H-2 and H-3 encoding for a dk17 FSM, where H-h 

represents encoding with Hamming distance h. As shown in Table 2, the vectors in H-2 differ by 2 

bits at most, enabling it to provide single bit fault detection. Additionally, the vectors in H-3 differ by 

3 bits at most, enabling it to provide single bit fault correction. Note that binary encoding can be 

interpreted as H-1; thus, it can provide no fault tolerance at all. As shown in Figure 5, the previous 

H-h [24] in information redundancy can provide desirable fault tolerance with a small increase in the 

number of hardware and latency, but it must be improved further in terms of hardware efficiency. 

Next State 

Logic

State 

Register

Output 

Logic
Input

State 

Register

Voting 

Logic
Output

State 

Register

2 33 3

3

3

3

 

Figure 3. Block diagram of dk17 FSM structure with hardware redundancy. 

Next State 

Logic

State 

Register
Input

3 Output 

Logic

Check 

Register
Output

2
3

3 3 3

 

Figure 4. Block diagram of dk17 FSM structure with time redundancy. Figure 4. Block diagram of dk17 FSM structure with time redundancy.



Electronics 2020, 9, 1110 5 of 13

Table 2. Example of state assignment for Hamming distances.

State H-1 H-2 H-3

S0 (000) 000 0000 000000
S1 (001) 001 1001 001011
S2 (010) 010 1010 010110
S3 (011) 011 0011 011101
S4 (100) 100 1100 100111
S5 (101) 101 0101 101100
S6 (110) 110 0110 110001
S7 (111) 111 1111 111010

Electronics 2020, 6, x FOR PEER REVIEW 5 of 13 

 

Input Output
Next State 

Logic

State 

Register

Output 

Logic

2 36 6

 

Figure 5. Block diagram of dk17 FSM structure with information redundancy. 

Table 2. Example of state assignment for Hamming distances. 

State H-1 H-2 H-3 

S0 (000) 000 0000 000000 

S1 (001) 001 1001 001011 

S2 (010) 010 1010 010110 

S3 (011) 011 0011 011101 

S4 (100) 100 1100 100111 

S5 (101) 101 0101 101100 

S6 (110) 110 0110 110001 

S7 (111) 111 1111 111010 

3. Proposed Method 

The main principle behind the proposed method is to provide differential fault tolerance for the 

states according to the importance of the states. Whereas the previous H-h [24] encodes the states of 

an FSM with the same Hamming distance h irrespective of the importance of the states, the proposed 

method does this with different Hamming distances. More precisely, strong fault tolerance equipped 

with long Hamming distance is applied to the critical states, and weak fault tolerance resulting from 

a short Hamming distance is applied to the non-critical states. Because the hardware complexity is 

proportional to the Hamming distance, the proposed method can provide an area-efficient solution 

by providing different H-l and H-s to maintain the desirable fault tolerance. The proposed method 

involves three steps, namely state classification, state encoding, and FSM construction, which are 

discussed next. 

3.1. State Classification 

The first step in the proposed method is to classify the states in an FSM into critical state SC and 

non-critical state SNC based on their importance. In the proposed method, we define the importance 

of a state based on the frequency of its occurrence. When a state occurs frequently, the state 

determined to require strong fault tolerance is classified as the critical state. Contrarily, when the 

occurrence of a state is less, the state determined not to require strong fault tolerance is classified as 

the non-critical state. To clarify the criterion for this classification, we define the coverage C affected 

by strong fault tolerance, which indicates the frequency ratio of the critical states through the entire 

operation, i.e., # / (# # ) 
C C NC

C S S S , where #Sc and #SNC denote the numbers of clock cycles 

associated with the critical and non-critical states, respectively. The classification process proceeds as 

follows: 

1. Count the frequency of each state using an ordinary FSM with random inputs; 

2. List the states based on their descending order of frequency; 

3. Extract a state from the top of the frequency list and include it in the critical state Sc; 

4. Repeat step (3) until the accumulation of frequency exceeds the coverage C; 

5. Include the remaining states in the non-critical state SNC. 

Following this process, all the states are classified into critical and non-critical states by satisfying 

the condition that the accumulated ratio of the most frequent states exceeds the coverage C. It means 

that the strong fault tolerance affects more than C when applying strong fault tolerance to the critical 

Figure 5. Block diagram of dk17 FSM structure with information redundancy.

3. Proposed Method

The main principle behind the proposed method is to provide differential fault tolerance for the
states according to the importance of the states. Whereas the previous H-h [24] encodes the states of an
FSM with the same Hamming distance h irrespective of the importance of the states, the proposed
method does this with different Hamming distances. More precisely, strong fault tolerance equipped
with long Hamming distance is applied to the critical states, and weak fault tolerance resulting from
a short Hamming distance is applied to the non-critical states. Because the hardware complexity is
proportional to the Hamming distance, the proposed method can provide an area-efficient solution
by providing different H-l and H-s to maintain the desirable fault tolerance. The proposed method
involves three steps, namely state classification, state encoding, and FSM construction, which are
discussed next.

3.1. State Classification

The first step in the proposed method is to classify the states in an FSM into critical state SC and
non-critical state SNC based on their importance. In the proposed method, we define the importance of
a state based on the frequency of its occurrence. When a state occurs frequently, the state determined
to require strong fault tolerance is classified as the critical state. Contrarily, when the occurrence of a
state is less, the state determined not to require strong fault tolerance is classified as the non-critical
state. To clarify the criterion for this classification, we define the coverage C affected by strong fault
tolerance, which indicates the frequency ratio of the critical states through the entire operation, i.e.,
C = #SC/(#SC + #SNC), where #Sc and #SNC denote the numbers of clock cycles associated with the
critical and non-critical states, respectively. The classification process proceeds as follows:

1. Count the frequency of each state using an ordinary FSM with random inputs;
2. List the states based on their descending order of frequency;
3. Extract a state from the top of the frequency list and include it in the critical state Sc;
4. Repeat step (3) until the accumulation of frequency exceeds the coverage C;
5. Include the remaining states in the non-critical state SNC.

Following this process, all the states are classified into critical and non-critical states by satisfying
the condition that the accumulated ratio of the most frequent states exceeds the coverage C. It means that
the strong fault tolerance affects more than C when applying strong fault tolerance to the critica state SC.
Note that step 1 should be performed until the frequency is saturated, to achieve a reliable frequency.



Electronics 2020, 9, 1110 6 of 13

Table 3 lists the state classification for a dk17 FSM. To achieve a reliable frequency, step 1 is
iteratively performed 107 times with random inputs. As a result, the frequency of the original states
of a dk17 FSM is sorted in descending order and accumulated. Table 3 indicates that S3 is the most
frequent state with a frequency of 24.58%, whereas S6 is the least frequent state with a frequency
of 0.96%. For various values of target coverage C, the critical state becomes different, as shown in
Table 3. For instance, the critical set includes (S3, S2) and (S3, S2, S4) for the cases of C = 30% and C =

60%, respectively. Note that C = 0% indicates a non-fault-tolerant FSM, and C = 100% corresponds
to the previous H-h FSM. Table 3 divides the states into two sets; however, the proposed method
can be extended further by dividing the states into more than two sets to realize finely controlled
fault tolerance.

Table 3. Example of state classification for different coverage.

State Frequency Accumulation C = 0% C = 30% C = 60% C = 90% C = 100%

S3 24.58% 24.58% SNC SC SC SC SC
S2 22.48% 47.06% SNC SC SC SC SC
S4 16.59% 63.65% SNC SNC SC SC SC
S0 15.30% 78.95% SNC SNC SNC SC SC
S1 15.30% 94.25% SNC SNC SNC SC SC
S5 3.83% 98.08% SNC SNC SNC SNC SC
S7 0.96% 99.04% SNC SNC SNC SNC SC
S6 0.96% 100.00% SNC SNC SNC SNC SC

3.2. State Encoding

After the classification of the states, the next step is to assign a strong fault tolerance to the critical
state and a weak fault tolerance to the non-critical state. Generally, the Hamming distance is used to
represent the capability of fault tolerance, because h = (2t + 1) encoding guarantees t fault correction
at most. For instance, H-3 and H-5 can correct one and two faults at most, respectively. Therefore, the
register-transfer level design selects a suitable Hamming distance for each critical and non-critical set
individually. Table 4 illustrates the state encoding manner depending on the Hamming distance in
the case of a dk17 FSM; here, we assumed that coverage C = 60% with SC = {S3, S2, S4}. In Table 4,
the pairs of (H-hs, H-hw) represent that a strong Hamming encoding of H-hs is applied to the critical
state and a weak hamming encoding of H-hw is applied to the non-critical state, where hs ≥ hw. As for
the coverage C = 60%, the critical set containing S3, S2, and S4 maintains the Hamming distance hs,
and the non-critical set containing S0, S1, S5, S6, and S7 maintains the Hamming distance hw. Because
a strong fault tolerance demands a long Hamming distance, the number of bits required to encode the
states increases with the increasing Hamming distance. Furthermore, Table 5 shows the state encoding
manner depending on the coverage C of a dk17 FSM; here, we assume that the pair (H-3, H-1) is
applied. The number of states in the critical set increases to 2, 3, and 5, as the coverage C extends from
30% to 90%. Because the critical state demands a larger number of bits than the non-critical state, the
total number of bits required to encode the states increases as the number of critical states increases.
It is thus apparent that a longer bit is inevitably required for realizing stronger fault tolerance and
wider coverage.



Electronics 2020, 9, 1110 7 of 13

Table 4. Example of state encoding for various fault tolerance.

State Type (H-1, H-1) (H-3, H-1) (H-5, H-1) (H-7, H-1)

S0 SNC 000 00101 0000000111 000000001111
S1 SNC 001 00111 0000001011 000000011011
S2 SC 010 00000 0000000000 000000000000
S3 SC 011 01011 0111010001 010100110111
S4 SC 100 10110 1001110011 101001101110
S5 SNC 101 01100 0000001101 000000011101
S6 SNC 110 01101 0000001110 000000011110
S7 SNC 111 01110 0000001111 000000011111

Table 5. Example of state encoding for various coverage.

State C = 0% C = 30% C = 60% C = 90% C = 100%

S0 000 (SNC) 1001 (SNC) 00101 (SNC) 000000 (SC) 000000 (SC)
S1 001 (SNC) 1010 (SNC) 00111 (SNC) 001011 (SC) 001011 (SC)
S2 010 (SNC) 0000 (SC) 00000 (SC) 010110 (SC) 010110 (SC)
S3 011 (SNC) 0111 (SC) 01011 (SC) 011101 (SC) 011101 (SC)
S4 100 (SNC) 1011 (SNC) 10110 (SC) 100111 (SC) 100111 (SC)
S5 101 (SNC) 1100 (SNC) 01100 (SNC) 000101 (SNC) 101100 (SC)
S6 110 (SNC) 1101 (SNC) 01101 (SNC) 001100 (SNC) 110001 (SC)
S7 111 (SNC) 1110 (SNC) 01110 (SNC) 001110 (SNC) 111010 (SC)

3.3. FSM Construction

Finally, a new state transition table should be completed to construct an FSM for the proposed
differential encoding. We additionally define a redundant state SR, which possesses the error correction
capability. The redundant state SR, neighboring the critical state in terms of encoding, is assigned
to the same operation as the critical state. When a minor fault occurs in the critical state SC, there is
a high probability of moving the redundant state SR, resulting in fault correction by performing a
similar operation to the original one. As an example, Table 6 shows the state transition table for the
proposed differential (H-3, H-1) encoding with coverage C = 60%. The critical states S2, S3, and S4 are
protected using a redundant state SR that generates an identical next state and output. For instance,
when a single fault occurs on S2 at any bit position, an identical next function S0 and output O =

001 in I = 00 can be obtained using the redundant state SR. Given the state transition table, FSM can
be implemented based on a typical FSM, as shown in Figure 6. The proposed method encodes the
states differentially by assigning more bits to the critical states and fewer bits to the non-critical states.
Because the bit length obtained from state encoding determines the hardware complexity of the overall
FSM, the proposed method can provide an area-efficient fault-tolerant encoding for FSMs. Note that
the additional logic in the proposed method is smaller than that in the information redundancy method
due to the differential encoding. Furthermore, the proposed method can be simply extended to more
than two types of states corresponding to the importance of the states; however, this section focused
only on a case with two types of states.

Electronics 2020, 6, x FOR PEER REVIEW 8 of 13 

 

Table 6. New state transition table encoded with (H-3, H-1) at C = 60%. 

State Type 
Next State Outputs 

I = 00 I = 01 I = 10 I = 11 I = 00 I = 01 I = 10 I = 11 

S0 (00101) SNC S0 S3 S1 S4 001 010 001 010 

S1 (00111) SNC S2 S3 S2 S5 000 000 010 000 

S2 (00000) SC S0 S0 S1 S1 001 101 001 101 

S2,0 (00001) SR S0 S0 S1 S1 001 101 001 101 

S2,1 (00010) SR S0 S0 S1 S1 001 101 001 101 

S2,2 (00100) SR S0 S0 S1 S1 001 101 001 101 

S2,3 (01000) SR S0 S0 S1 S1 001 101 001 101 

S2,4 (10000) SR S0 S0 S1 S1 001 101 001 101 

S3 (01011) SC S3 S4 S3 S4 100 101 010 101 

S3,0 (01010) SR S3 S4 S3 S4 100 101 010 101 

S3,1 (01001) SR S3 S4 S3 S4 100 101 010 101 

S3,2 (01111) SR S3 S4 S3 S4 100 101 010 101 

S3,3 (00011) SR S3 S4 S3 S4 100 101 010 101 

S3,4 (11011) SR S3 S4 S3 S4 100 101 010 101 

S4 (10110) SC S4 S3 S4 S4 000 100 010 100 

S4,0 (10111) SR S4 S3 S4 S4 000 100 010 100 

S4,1 (10100) SR S4 S3 S4 S4 000 100 010 100 

S4,2 (10010) SR S4 S3 S4 S4 000 100 010 100 

S4,3 (11110) SR S4 S3 S4 S4 000 100 010 100 

S4,4 (00110) SR S4 S3 S4 S4 000 100 010 100 

S5 (01100) SNC S6 S7 S2 S2 000 000 010 100 

S6 (01101) SNC S3 S0 S4 S1 010 101 010 101 

S7 (01110) SNC S3 S4 S2 S2 100 100 010 100 

C

NC

C

NC

C

NC

Input Output
Next State 

Logic

State 

Register

Output 

Logic

2 35 5

 

Figure 6. Block diagram of dk17 FSM structure of proposed (H-3, H-1) with C = 60%. 

4. Experimental Results 

For a fair comparison, we implement four FSMs from ISCAS’91 FSM benchmarks using a 180 

nm CMOS process. Because the proposed method provides a flexible solution, a non-fault tolerance 

can be interpreted as corresponding to the proposed method with C = 0%, and the previous H-h 

encoding [24] to the proposed method with C = 100%. First, the area complexity is compared in terms 

of equivalent gate counts, and the failure rate is analyzed with single, double, and triple fault cases. 

Finally, the area efficiency calculated from the two comparisons is described to verify the advantages 

of the proposed method. 

Among the various FSMs available in the ISCAS’91 FSM benchmark, we adopt four FSMs, 

namely dk17, dk512, bbara, and beecount, since they are synthesizable and provide FSM states from 

7 to 15. After designing various FSMs with different coverages and fault tolerances, they are 

synthesized via a 180 nm CMOS process at the working frequency of 200 MHz. Figure 7 shows the 

equivalent gate counts according to coverage C and Hamming distance h. Figure 7 shows that the 

hardware complexity increases as the coverage increases and the Hamming distance increases due 

to the increase in the number of state bits. Note that the previous non-fault tolerance represented by 

C = 0% involves the least hardware complexity, and the previous Hamming represented by C = 100% 

involves the highest hardware complexity, for all cases. 

Figure 6. Block diagram of dk17 FSM structure of proposed (H-3, H-1) with C = 60%.



Electronics 2020, 9, 1110 8 of 13

Table 6. New state transition table encoded with (H-3, H-1) at C = 60%.

State Type Next State Outputs

I = 00 I = 01 I = 10 I = 11 I = 00 I = 01 I = 10 I = 11

S0 (00101) SNC S0 S3 S1 S4 001 010 001 010
S1 (00111) SNC S2 S3 S2 S5 000 000 010 000
S2 (00000) SC S0 S0 S1 S1 001 101 001 101

S2,0 (00001) SR S0 S0 S1 S1 001 101 001 101
S2,1 (00010) SR S0 S0 S1 S1 001 101 001 101
S2,2 (00100) SR S0 S0 S1 S1 001 101 001 101
S2,3 (01000) SR S0 S0 S1 S1 001 101 001 101
S2,4 (10000) SR S0 S0 S1 S1 001 101 001 101
S3 (01011) SC S3 S4 S3 S4 100 101 010 101

S3,0 (01010) SR S3 S4 S3 S4 100 101 010 101
S3,1 (01001) SR S3 S4 S3 S4 100 101 010 101
S3,2 (01111) SR S3 S4 S3 S4 100 101 010 101
S3,3 (00011) SR S3 S4 S3 S4 100 101 010 101
S3,4 (11011) SR S3 S4 S3 S4 100 101 010 101
S4 (10110) SC S4 S3 S4 S4 000 100 010 100

S4,0 (10111) SR S4 S3 S4 S4 000 100 010 100
S4,1 (10100) SR S4 S3 S4 S4 000 100 010 100
S4,2 (10010) SR S4 S3 S4 S4 000 100 010 100
S4,3 (11110) SR S4 S3 S4 S4 000 100 010 100
S4,4 (00110) SR S4 S3 S4 S4 000 100 010 100
S5 (01100) SNC S6 S7 S2 S2 000 000 010 100
S6 (01101) SNC S3 S0 S4 S1 010 101 010 101
S7 (01110) SNC S3 S4 S2 S2 100 100 010 100

4. Experimental Results

For a fair comparison, we implement four FSMs from ISCAS’91 FSM benchmarks using a 180
nm CMOS process. Because the proposed method provides a flexible solution, a non-fault tolerance
can be interpreted as corresponding to the proposed method with C = 0%, and the previous H-h
encoding [24] to the proposed method with C = 100%. First, the area complexity is compared in terms
of equivalent gate counts, and the failure rate is analyzed with single, double, and triple fault cases.
Finally, the area efficiency calculated from the two comparisons is described to verify the advantages
of the proposed method.

Among the various FSMs available in the ISCAS’91 FSM benchmark, we adopt four FSMs, namely
dk17, dk512, bbara, and beecount, since they are synthesizable and provide FSM states from 7 to 15.
After designing various FSMs with different coverages and fault tolerances, they are synthesized via
a 180 nm CMOS process at the working frequency of 200 MHz. Figure 7 shows the equivalent gate
counts according to coverage C and Hamming distance h. Figure 7 shows that the hardware complexity
increases as the coverage increases and the Hamming distance increases due to the increase in the
number of state bits. Note that the previous non-fault tolerance represented by C = 0% involves the
least hardware complexity, and the previous Hamming represented by C = 100% involves the highest
hardware complexity, for all cases.



Electronics 2020, 9, 1110 9 of 13Electronics 2020, 6, x FOR PEER REVIEW 9 of 13 

 

10080400 20 60

0

2000

4000

6000

8000
E

G
C

Coverage (%)

(H-3,H-1) (H-7,H-1)(H-5,H-1)

 

10080400 20 60

0

2000

4000

6000

8000

E
G

C

Coverage (%)

(H-3,H-1) (H-7,H-1)(H-5,H-1)

 

(a) beecount (b) dk17 

10080400 20 60

0

2000

4000

6000

8000

E
G

C

Coverage (%)

 

 

 

(H-3,H-1) (H-7,H-1)(H-5,H-1)

 

0

2000

4000

6000

8000

E
G

C

Coverage (%)

 

 

 

10080400 20 60

 

 

 

(H-3,H-1) (H-7,H-1)(H-5,H-1)

 
(c) bbara (d) dk512 

Figure 7. Equivalent gate counts for fault-tolerant FSMs. 

Moreover, the fault rate is analyzed for the proposed method with different coverages and 

Hamming distances. To perform a practical simulation [25], the error model is designed based on real 

fault patterns. The stuck-at-zero and stuck-at-one models are used, which represent the situation in 

which an energetic particle causes the fixed state of the storage temporally [26]. For the number of 

faults, [8] indicates that SEU is the most frequent fault, and single event multiple upset (SEMU) with 

up to three bits is dominant in modern integrated circuits [27]. To compute the fault rate of an FSM, 

it is operated for 1024 clock cycles and random faults using either stuck-at-zero or stuck-at-one 

models are inserted for one clock cycle [25,28]. Figure 8 shows the failure rate of the proposed 

method, in which a failure in FSM counts when either the output or the current state of normal 

operation without faults is different from that of a faulty operation. To account for the cases of both 

SEU and SEMU, various failure rates are computed under single, double, and triple fault injections 

[27], as depicted. Figure 8 shows that the failure ratio improves due the increase in the coverage and 

the Hamming distance caused by providing strong fault tolerance on more states. The previous non-

fault tolerance represented by C = 0% provides the worst fault tolerance and the previous Hamming 

encoding represented by C = 100% provides the best fault tolerance, in all cases. 

Figure 7. Equivalent gate counts for fault-tolerant FSMs.

Moreover, the fault rate is analyzed for the proposed method with different coverages and
Hamming distances. To perform a practical simulation [25], the error model is designed based on real
fault patterns. The stuck-at-zero and stuck-at-one models are used, which represent the situation in
which an energetic particle causes the fixed state of the storage temporally [26]. For the number of
faults, [8] indicates that SEU is the most frequent fault, and single event multiple upset (SEMU) with
up to three bits is dominant in modern integrated circuits [27]. To compute the fault rate of an FSM, it is
operated for 1024 clock cycles and random faults using either stuck-at-zero or stuck-at-one models are
inserted for one clock cycle [25,28]. Figure 8 shows the failure rate of the proposed method, in which a
failure in FSM counts when either the output or the current state of normal operation without faults is
different from that of a faulty operation. To account for the cases of both SEU and SEMU, various failure
rates are computed under single, double, and triple fault injections [27], as depicted. Figure 8 shows
that the failure ratio improves due the increase in the coverage and the Hamming distance caused by
providing strong fault tolerance on more states. The previous non-fault tolerance represented by C =

0% provides the worst fault tolerance and the previous Hamming encoding represented by C = 100%
provides the best fault tolerance, in all cases.



Electronics 2020, 9, 1110 10 of 13Electronics 2020, 6, x FOR PEER REVIEW 10 of 13 

 

10080200

0

20

40

60

80

100

F
a
il
u

re
 R

a
te

 (
%

)

Coverage (%)

40 60

TF, (H-5,H-1)

TF, (H-3,H-1)

TF, (H-7,H-1)

DF, (H-5,H-1)

DF, (H-3,H-1)

DF, (H-7,H-1)

SF, (H-5,H-1)

SF, (H-3,H-1)

SF, (H-7,H-1)

DF, (H-5,H-1)

DF, (H-3,H-1)

DF, (H-7,H-1)

SF, (H-5,H-1)

SF, (H-3,H-1)

SF, (H-7,H-1) TF, (H-7,H-1)

TF, (H-3,H-1)

TF, (H-5,H-1)

 

0

20

40

60

80

100

F
a
ilu

re
 R

a
te

 (
%

)

Coverage (%)

10080200 40 60

DF, (H-5,H-1)

DF, (H-3,H-1)

DF, (H-7,H-1)

SF, (H-5,H-1)

SF, (H-3,H-1)

SF, (H-7,H-1) TF, (H-7,H-1)

TF, (H-3,H-1)

TF, (H-5,H-1)TF, (H-5,H-1)

TF, (H-3,H-1)

TF, (H-7,H-1)

DF, (H-5,H-1)

DF, (H-3,H-1)

DF, (H-7,H-1)

SF, (H-5,H-1)

SF, (H-3,H-1)

SF, (H-7,H-1)

DF, (H-5,H-1)

DF, (H-3,H-1)

DF, (H-7,H-1)

SF, (H-5,H-1)

SF, (H-3,H-1)

SF, (H-7,H-1) TF, (H-7,H-1)

TF, (H-3,H-1)

TF, (H-5,H-1)

 

(a) beecount (b) dk17 

0

20

40

60

80

100

F
a

ilu
re

 R
a

te
 (

%
)

Coverage (%)

10080200 40 60

DF, (H-5,H-1)

DF, (H-3,H-1)

DF, (H-7,H-1)

SF, (H-5,H-1)

SF, (H-3,H-1)

SF, (H-7,H-1) TF, (H-7,H-1)

TF, (H-3,H-1)

TF, (H-5,H-1)TF, (H-5,H-1)

TF, (H-3,H-1)

TF, (H-7,H-1)

DF, (H-5,H-1)

DF, (H-3,H-1)

DF, (H-7,H-1)

SF, (H-5,H-1)

SF, (H-3,H-1)

SF, (H-7,H-1)

DF, (H-5,H-1)

DF, (H-3,H-1)

DF, (H-7,H-1)

SF, (H-5,H-1)

SF, (H-3,H-1)

SF, (H-7,H-1) TF, (H-7,H-1)

TF, (H-3,H-1)

TF, (H-5,H-1)

 

0

20

40

60

80

100
F

a
ilu

re
 R

a
te

 (
%

)

Coverage (%)

10080200 40 60

DF, (H-5,H-1)

DF, (H-3,H-1)

DF, (H-7,H-1)

SF, (H-5,H-1)

SF, (H-3,H-1)

SF, (H-7,H-1) TF, (H-7,H-1)

TF, (H-3,H-1)

TF, (H-5,H-1)TF, (H-5,H-1)

TF, (H-3,H-1)

TF, (H-7,H-1)

DF, (H-5,H-1)

DF, (H-3,H-1)

DF, (H-7,H-1)

SF, (H-5,H-1)

SF, (H-3,H-1)

SF, (H-7,H-1)

DF, (H-5,H-1)

DF, (H-3,H-1)

DF, (H-7,H-1)

SF, (H-5,H-1)

SF, (H-3,H-1)

SF, (H-7,H-1) TF, (H-7,H-1)

TF, (H-3,H-1)

TF, (H-5,H-1)

 
(c) bbara (d) dk512 

Figure 8. Failure rates for fault-tolerant FSMs. 

Finally, we compare the area efficiency of the proposed method. In this comparison, area 

efficiency is measured by a normalized (100 − failure rate)/(area × latency). The non-fault tolerance 

encoding interpreted as C = 0% of the proposed method exhibits the smallest area requirement with 

the worst failure rate. Contrarily, the previous Hamming encoding interpreted as C = 100% of the 

proposed method exhibits the largest area requirement with the best failure rate. Therefore, it is clear 

that unlike the two extreme cases of the previous method, the proposed method can provide an 

intermediate solution that requires a feasible area with a reliable failure rate by improving the area 

efficiency. Figure 9 shows the area efficiency according to the coverage C and Hamming distance h. 

The proposed method can provide a better solution than the previous encoding at all times. On 

average, the proposed method improves the area efficiency by 36.1% and 49.2% compared with that 

by non-fault tolerance (C = 0%) and Hamming encoding (C = 100%), respectively. Furthermore, the 

proposed method improves the area efficiency by 43.8% and 74.6% compared with that by previous 

hardware redundancy and time redundancy, respectively. As a result, the proposed method can 

provide the most efficient method compared to previous hardware, time, and information 

redundancy methods. Since the proposed method can be applied to any FSMs, it is allowed to apply 

the proposed method for any modern circuits equipped with an FSM. 

Figure 8. Failure rates for fault-tolerant FSMs.

Finally, we compare the area efficiency of the proposed method. In this comparison, area efficiency
is measured by a normalized (100− failure rate)/(area× latency). The non-fault tolerance encoding
interpreted as C = 0% of the proposed method exhibits the smallest area requirement with the worst
failure rate. Contrarily, the previous Hamming encoding interpreted as C = 100% of the proposed
method exhibits the largest area requirement with the best failure rate. Therefore, it is clear that unlike
the two extreme cases of the previous method, the proposed method can provide an intermediate
solution that requires a feasible area with a reliable failure rate by improving the area efficiency. Figure 9
shows the area efficiency according to the coverage C and Hamming distance h. The proposed method
can provide a better solution than the previous encoding at all times. On average, the proposed method
improves the area efficiency by 36.1% and 49.2% compared with that by non-fault tolerance (C = 0%)
and Hamming encoding (C = 100%), respectively. Furthermore, the proposed method improves the
area efficiency by 43.8% and 74.6% compared with that by previous hardware redundancy and time
redundancy, respectively. As a result, the proposed method can provide the most efficient method
compared to previous hardware, time, and information redundancy methods. Since the proposed
method can be applied to any FSMs, it is allowed to apply the proposed method for any modern
circuits equipped with an FSM.



Electronics 2020, 9, 1110 11 of 13Electronics 2020, 6, x FOR PEER REVIEW 11 of 13 

 

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a
 E

ff
ic

ie
n

c
y

Coverage (%)

 

 

 

 Time Redundancy

 Hardware Redundancy

Proposed (H-3,H-1) 

Proposed (H-5,H-1) 

Proposed (H-7,H-1) 

 
0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a
 E

ff
ic

ie
n

c
y

Coverage (%)

 

 

 

 

 Time Redundancy

 Hardware Redundancy

Proposed (H-3,H-1) 

Proposed (H-5,H-1) 

Proposed (H-7,H-1) 

 

(a) beecount (b) dk17 

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a
 E

ff
ic

ie
n

c
y

Coverage (%)

 

 

 

 

 

 

 Time Redundancy

 Hardware Redundancy

Proposed (H-3,H-1) 

Proposed (H-5,H-1) 

Proposed (H-7,H-1) 

 

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0
A

re
a
 E

ff
ic

ie
n

c
y

Coverage (%)

 

 

 

 

 

 Time Redundancy

 Hardware Redundancy

Proposed (H-3,H-1) 

Proposed (H-5,H-1) 

Proposed (H-7,H-1) 

 
(c) bbara (d) dk512 

Figure 9. Area efficiency for fault-tolerant FSMs. 

5. Conclusions 

An area-efficient encoding method was proposed for FSMs to encode the states differently 

depending on the importance of the states. Unlike the previous non-fault tolerance or complete fault 

tolerance encoding with a constant Hamming distance, the proposed method classifies the states into 

critical and non-critical states. After this classification, the proposed method provides a strong fault 

tolerance to the critical states and a weak fault tolerance to the non-critical states. The fault tolerance 

results from a long Hamming distance, which increases the hardware complexity. According to the 

experimental results using the ISCAS’91 FSM benchmarks, the proposed method provides a flexible 

solution to assign different fault tolerances rather than a fixed fault tolerance. The proposed method 

improves the area efficiency by 36.1%, 43.8%, 49.2%, and 74.6% compared with that by the non-fault 

tolerance, previous hardware redundancy, information redundancy, and time redundancy methods, 

respectively. Furthermore, the proposed method can be extended by classifying the states into more 

than two sets to realize finely controlled fault tolerance to further improve the area efficiency. For 

future research, we aim to study a stronger fault-tolerant method resistant to multiple upsets. The 

proposed method has a limitation in that it supports only single event upset and single event 

transient. Thus, further research will be conducted on supporting multiple event upset and transient 

to enhance fault tolerance. 

Author Contributions: Conceptualization, H.Y.; methodology, J.P.; software, J.P.; validation, J.P. and H.Y.; 

formal analysis, H.Y.; investigation, J.P.; resources, J.P.; data curation, J.P.; writing—original draft preparation, 

J.P.; writing—review and editing, H.Y.; visualization, J.P.; supervision, H.Y.; project administration, H.Y.; 

funding acquisition, H.Y. All authors have read and agreed to the published version of the manuscript. 

Figure 9. Area efficiency for fault-tolerant FSMs.

5. Conclusions

An area-efficient encoding method was proposed for FSMs to encode the states differently
depending on the importance of the states. Unlike the previous non-fault tolerance or complete fault
tolerance encoding with a constant Hamming distance, the proposed method classifies the states
into critical and non-critical states. After this classification, the proposed method provides a strong
fault tolerance to the critical states and a weak fault tolerance to the non-critical states. The fault
tolerance results from a long Hamming distance, which increases the hardware complexity. According
to the experimental results using the ISCAS’91 FSM benchmarks, the proposed method provides a
flexible solution to assign different fault tolerances rather than a fixed fault tolerance. The proposed
method improves the area efficiency by 36.1%, 43.8%, 49.2%, and 74.6% compared with that by the
non-fault tolerance, previous hardware redundancy, information redundancy, and time redundancy
methods, respectively. Furthermore, the proposed method can be extended by classifying the states
into more than two sets to realize finely controlled fault tolerance to further improve the area efficiency.
For future research, we aim to study a stronger fault-tolerant method resistant to multiple upsets.
The proposed method has a limitation in that it supports only single event upset and single event
transient. Thus, further research will be conducted on supporting multiple event upset and transient
to enhance fault tolerance.

Author Contributions: Conceptualization, H.Y.; methodology, J.P.; software, J.P.; validation, J.P. and H.Y.; formal
analysis, H.Y.; investigation, J.P.; resources, J.P.; data curation, J.P.; writing—original draft preparation, J.P.;
writing—review and editing, H.Y.; visualization, J.P.; supervision, H.Y.; project administration, H.Y.; funding
acquisition, H.Y. All authors have read and agreed to the published version of the manuscript.



Electronics 2020, 9, 1110 12 of 13

Funding: This work was supported by the Brain Korea 21 Plus and by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) (NRF-2019M3F3A1A01074449).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mealy, G.H. A method for synthesizing sequential circuits. Bell Syst. Tech. J. 1955, 34, 1045–1079. [CrossRef]
2. Moore, E.F. Gedanken-experiments on sequential machines. Autom. Stud. 1956, 34, 129–153.
3. Xu, J.; Dong, F.; Tian, P.; Tang, F.; Yang, Q. Design and implementation of HL-2A host centralized control

system FSM model based on EPICS. IEEE Trans. Plasma Sci. 2018, 46, 1234–1238. [CrossRef]
4. Sharma, C.; Chauhan, D.K. High performance low power AHB DMA controller with FSM decomposition

technique. In Proceedings of the 2017 IEEE International Conference on Power, Control, Signals and
Instrumentation Engineering (ICPCSI), Chennai, India, 21–22 September 2017.

5. Chu, S.I.; Hsieh, C.E.; Huang, Y.J. Design of FSM-based function with reduced number of states in integral
stochastic computing. IEEE Trans. Very Large Scale Integr. (Vlsi) Syst. 2019, 27, 1475–1479. [CrossRef]

6. Rathor, V.S.; Garg, B.; Sharma, G.K. An energy-efficient trusted fsm design technique to thwart fault injection
and trojan attacks. In Proceedings of the 2018 31st International Conference on VLSI Design and 2018 17th
International Conference on Embedded Systems (VLSID), Maharashtra, India, 6–10 January 2018.

7. Nahiyan, A.; Farahmandi, F.; Mishra, P.; Forte, D.; Tehranipoor, M. Security-aware FSM design flow for
identifying and mitigating vulnerabilities to fault attacks. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 2018, 38, 1003–1016. [CrossRef]

8. Hashimoto, M.; Liao, W. Soft Error and Its Countermeasures in Terrestrial Environment. In Proceedings
of the 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), Beijing, China, 13–16
January 2020.

9. Raji, M.; Sabet, M.A.; Ghavami, B. Soft error reliability improvement of digital circuits by exploiting a fast
gate sizing scheme. IEEE Access 2019, 7, 66485–66495. [CrossRef]

10. Gaillard, R. Single event effects: Mechanisms and classification. In Soft Errors in Modern Electronic Systems;
Springer: Berlin/Heidelberg, Germany, 2011; pp. 27–54.

11. Lei, L.; Yinghui, L.; Hongwei, Z.; Xuesong, Z.; Qingkui, Y.; Min, T. Single Event Effect Detection and
Simulation Analysis for an ASIC. In Proceedings of the 2019 2nd International Conference on Information
Systems and Computer Aided Education (ICISCAE), Dalian, China, 6–8 July 2019.

12. Hiemstra, D.M.; Kirischian, V.; Brelski, J. Single event upset characterization of the Kintex UltraScale field
programmable gate array using proton irradiation. In Proceedings of the 2016 IEEE Radiation Effects Data
Workshop (REDW), Portland, OR, USA, 11–15 July 2016.

13. Ciani, L.; Catelani, M. A fault tolerant architecture to avoid the effects of Single Event Upset (SEU) in avionics
applications. Measurement 2014, 54, 256–263. [CrossRef]

14. Evans, A.; Glorieux, M.; Alexandrescu, D.; Polo, C.B.; Ferlet-Cavrois, V. Single event multiple transient
(SEMT) measurements in 65 nm bulk technology. In Proceedings of the 2016 16th European Conference on
Radiation and Its Effects on Components and Systems (RADECS), Bremen, Germany, 19–23 September 2016.

15. Hao, P.; Chen, S.; Wu, Z.; Chi, Y. On-chip relative single-event transient/single-event upset susceptibility test
circuit for integrated circuits working in real time. IEEE Trans. Nucl. Sci. 2017, 65, 376–381. [CrossRef]

16. Nahiyan, A.; Xiao, K.; Yang, K.; Jin, Y.; Forte, D.; Tehranipoor, M. AVFSM: A framework for identifying and
mitigating vulnerabilities in FSMs. In Proceedings of the the 53rd Annual Design Automation Conference,
Austin, TX, USA, 5–9 June 2016.

17. Li, S.; Choi, K. A high performance low power implementation scheme for FSM. In Proceedings of the 2014
International SoC Design Conference (ISOCC), Jeju, Korea, 3–6 November 2014.

18. El-Maleh, A.H.; Al-Qahtani, A.S. A finite state machine based fault tolerance technique for sequential circuits.
Microelectron. Reliab. 2014, 54, 654–661. [CrossRef]

19. Madhumithaa, S.P.; Aravind, S.; Ch, R.P. A Diagnosis Pattern Generation Procedure to Distinguish Between
Stuck-at and Bridging Faults in Digital Circuits. In Proceedings of the 2019 International Conference on
Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019.

http://dx.doi.org/10.1002/j.1538-7305.1955.tb03788.x
http://dx.doi.org/10.1109/TPS.2017.2769674
http://dx.doi.org/10.1109/TVLSI.2019.2892847
http://dx.doi.org/10.1109/TCAD.2018.2834396
http://dx.doi.org/10.1109/ACCESS.2019.2902505
http://dx.doi.org/10.1016/j.measurement.2014.02.018
http://dx.doi.org/10.1109/TNS.2017.2784569
http://dx.doi.org/10.1016/j.microrel.2013.10.022


Electronics 2020, 9, 1110 13 of 13

20. Zhang, J.; Li, Y.; Han, T.; Li, J. Radiation Hardened Design Based on TMR_5DFF for ASIC. In Proceedings of
the 2019 IEEE 5th International Conference on Computer and Communications (ICCC), Chengdu, China,
6–9 December 2019.

21. Mallavarapu, P.; Upadhyay, H.N.; Rajkumar, G.; Elamaran, V. Fault-tolerant digital filters on FPGA using
hardware redundancy techniques. In Proceedings of the 2017 International conference of Electronics,
Communication and Aerospace Technology (ICECA), Coimbatore, India, 20–22 April 2017.

22. Hamilton, N.; Graham, S.; Carbino, T.; Petrosky, J.; Betances, A. Adaptive-Hybrid Redundancy with Error
Injection. Electronics 2019, 8, 1266. [CrossRef]

23. Alvarez, I.; Proenza, J.; Barranco, M.; Knezic, M. Towards a time redundancy mechanism for critical frames
in Time-Sensitive Networking. In Proceedings of the 2017 22nd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), Limassol, Cyprus, 12–15 September 2017.

24. Sooraj, S.; Bhakthavatchalu, R. Hamming 3 algorithm for improving the reliability of SRAM based FPGAs.
In Proceedings of the 2017 International Conference on Communication and Signal Processing (ICCSP),
Tamilnadu, India, 6–8 April 2017.

25. Eslami, M.; Ghavami, B.; Raji, M.; Mahani, A. A survey on fault injection methods of digital integrated
circuits. Integration 2020, 71, 154–163. [CrossRef]

26. Choi, S.; Park, J.; Yoo, H. Area-Efficient Fault Tolerant Design for Finite State Machines. In Proceedings of the
2020 International Conference on Electronics, Information, and Communication (ICEIC), Barcelona, Spain,
19–22 January 2020.

27. Fabero, J.C.; Mecha, H.; Franco, F.J.; Clemente, J.A.; Korkian, G.; Rey, S.; Velazco, R. Single Event Upsets under
14-MeV Neutrons in a 28-nm SRAM-based FPGA in Static Mode. IEEE Trans. Nucl. Sci. 2020. [CrossRef]

28. Wu, K.; Pahlevanzadeh, H.; Liu, P.; Yu, Q. A new fault injection method for evaluation of combining SEU
and SET effects on circuit reliability. In Proceedings of the 2014 IEEE International Symposium on Circuits
and Systems (ISCAS), Melbourne, Australia, 1–5 June 2014.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/electronics8111266
http://dx.doi.org/10.1016/j.vlsi.2019.11.006
http://dx.doi.org/10.1109/TNS.2020.2977874
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background 
	Finite State Machine 
	Fault-Tolerant Techniques 

	Proposed Method 
	State Classification 
	State Encoding 
	FSM Construction 

	Experimental Results 
	Conclusions 
	References

